72. Synthese substituierter Cyclononatetraene¹)

von Gabriele Sabbioni²) und Markus Neuenschwander*

Institut für Organische Chemie der Universität Bern, Freiestrasse 3, CH-3012 Bern

(30.I.85)

Synthesis of Substituted Cyclononatetraenes

In the course of an exploration of possible synthetic pathways to nonafulvenes, a series of 1-substituted cyclononatetraenes (CNT) **4b**-1 have been prepared in yields of about 60 %. Their structures follow from spectroscopic data as well as from the quantitative valence isomerisation to 1-*endo*-substituted *cis*-3a,7a-dihydroindenes **8**. Both all-*cis*-CNT⁻¹ **1** and *cis,cis,cis,trans*-CNT⁻² **2** have been used as nucleophiles. Whereas **2** is normally more nucleophilic than **1**, the yield of cyclononatetraenes **4** prepared with **2** may be reduced due to by-products such as **9** and **10**.

1. Einleitung. – Mit der Synthese von Cyclononatetraenid (1)³) entdeckten Katz und Garratt [3] sowie LaLancette und Benson [4] 1963 nicht nur ein neues der Hückel-Regel [5] gehorchendes cyclisches 10 π -System, sondern auch ein Nucleophil, das sich mit Elektrophilen zu substituierten Cyclononatetraenen umsetzen lässt. Bei der systematischen Untersuchung der Reaktion stellten Boche et al. [6] später fest, dass bei der Umsetzung von 9-anti-Methoxybicyclo[6.1.0]nona-2,4,6-trien (3, X = OCH₃) mit Alkalimetallen nahezu ausschliesslich cis,cis,cis,trans-Cyclononatetraenid 2⁴) entsteht. Das Anion 2 isomerisiert sich bei Protonen- und Alkalimetall-Katalyse, sowie thermischer ($\Delta G^{\neq} \simeq 35$ kcal/mol) und photochemischer Initiierung zu 1 [7].

In der Folge wurden durch Umsetzung von $CNT^{-}(1)$ mit Elektrophilen (R-X bzw. R⁺) verschiedene einfache 1-substituierte Cyclononatetraene [3] [8] sowie 1-(1-Cycloheptatrienyl)- [9] und 1-(1-Cyclononatetraenyl)cyclononatetraene [10] hergestellt. Ferner stellte man fest, dass die anfallenden Cyclononatetraene 4 bei Raumtemperatur relativ rasch einen elektrozyklischen Ringschluss zu *cis*-3a,7a-Dihydroindenen 8 eingehen. Die Halbwertszeit der Reaktion $4 \rightarrow 8$ beträgt für Cyclononatetraene (R = H) bei 35°C rund 16 min [11] und wird bei substituierten Cyclononatetraenen erheblich von der Natur des Substituenten R beeinflusst. Zur Gewinnung reiner Cyclononatetraene 4 sind deshalb meist Temperaturen unterhalb -20°C einzuhalten.

Im Gegensatz zu 1 können bei der Umsetzung von 2 mit Elektrophilen drei isomere Cyclononatetraene 4, 5 und 7 entstehen [6]: Wie *Boche et al.* gezeigt haben, reagiert 2 mit Organometall-chloriden (z. B. $(CH_3)_3SiCl$) fast ausschliesslich an C(1) [12]. Auch bei der Umsetzung von 2 mit Acylhalogeniden entstehen in hohen Ausbeuten Cyclononatetra-

¹) 42. Mitt. über Fulvene, Fulvalene. 41. Mitt.: [1].

²) Teil der Dissertation [2].

³) Im folgenden als CNT⁻ abgekürzt.

⁴⁾ Im folgenden als ccct-CNT⁻ abgekürzt.

Schema 1. Umsetzung von 1 und 2 mit Elektrophilen R-X bzw. R⁺

enylketone 4 (R = CO-R), die nach Deprotonierung ein Gleichgewicht zwischen Acylcyclononatetraenid und Nonafulvenolat ausbilden, welches von der Art des Gegenions, des Lösungsmittels sowie der Temperatur abhängig ist [13]. Nur bei der Protonierung von *ccct*-CNT⁻ (2) konnten bisher alle drei denkbaren Cyclononatetraene 4, 5, 7 (R = H) anhand ihrer Valenzisomerisierungsprodukte 8, 9, 10 im Verhältnis 28:48:24% stichhaltig nachgewiesen werden [6] (*Schema 1*).

Wir berichten im folgenden über die Synthese neuer substituierter Cyclononatetraene 4, deren potentielle Abgangsgruppen am exozyklischen C-Atom eine spätere Umsetzung zu Nonafulvenen ermöglichen sollten.

2. Synthese substituierter Cyclononatetraene 4. – 2.1. Substitution von Brom-alkylacetaten. Wie wir früher gezeigt haben, reagiert das aus 9-anti-Chlorbicyclo[6.1.0]nona-2,4,6-trien mit Li gewonnene Li-CNT⁵) mit Essigsäure-brommethylester mit akzeptablen Ausbeuten zu Essigsäure-(2,4,6,8-cyclononatetraenyl)methylester (4a) [14]. Deshalb waren bei der Übertragung der Reaktion auf substituierte Acetoxybromalkane keine Schwierigkeiten zu erwarten. Umso überraschender war die Feststellung, dass bei der schonenden Umsetzung von Li-CNT⁵) mit Essigsäure- α -brombenzylester (11c) nicht der erwartete Essigsäure-(2,4,6,8-cyclononatetraenyl)phenylmethylester (4c), sondern mit 63% Ausbeute⁶) und hoher Stereoselektivität Essigsäure-(bicyclo[6.1.0]nona-2,4,6-trien-9-anti-yl)phenylmethylester (9c) entstanden war [15]. Dieser Befund wurde von uns zunächst falsch interpretiert [15]. Im Lichte überzeugender Protonierungsversuche von 2 wies dann Boche darauf hin, dass 9c durch Angriff des Elektrophils 11c an C(4) bis C(7) von 2, conrotatorische Zyklisierung $5\rightarrow 6$ und Cope-Umlagerung entstanden sein könnte [16]. Dies würde bedeuten, dass ccct-CNT⁻ (2) mit einfachen Elektrophilen wie (CH₃)₃SiCl [12] oder Essigsäure-brommethylester 11a [14] bevorzugt mit dem nucleophi-

⁵) Heute ist bekannt [6b], dass im Gegensatz zu früheren Annahmen nicht reines all-cis-CNT⁻ (1), sondern ein etwa (2:1)-Gemisch aus 2 und 1 entsteht. Unter unseren völlig aprotischen Bedingungen trat auch nach Monaten bei 20°C noch keine Isomerisierung 2→1 (vgl. [7]) ein!

⁶) Exp. Ausbeute 42%; Ausbeute bezogen auf im Gemisch vorhandenes 2.

Schema 2. Umsetzung der Cyclononatetraenide 1 und 2 mit Brom-alkylacetaten 11

leren C(1), mit sterisch anspruchsvolleren Elektrophilen wie **11c** dagegen bevorzugt mit den besser zugänglichen C(4) bis C(7) reagiert [15]. Ferner sollten die gewünschten Cyclononatetraene **4** ausgehend von $CNT^{-}(1)$ zugänglich sein.

In der Tat ergibt die Umsetzung von Essigsäure-(1-Bromäthyl)ester (11b) bzw. 11c mit Li-1 in THF bei -20 bis -25 °C nach Tieftemperatur-Chromatographie über Kieselgel die spektroskopisch reinen Essigsäure-cyclononatetraenylester 4b und 4c mit 60–65% Ausbeute [2].

Allerdings sei festgehalten, dass die nucleophile Reaktivität von Li-1 zur Umsetzung mit einfachen Estern des Typs **11b** und **11c** bei -25°C gerade noch ausreicht: Essigsäure-(1-bromisobutyl)ester, -isopentylester und -(1-bromcyclohexyl)ester ergeben mit Li-1 innerhalb von Stunden nur Spuren der gewünschten Produkte [17]. Damit wird klar, dass all-*cis*-CNT⁻ (1) – offensichtlich auf Grund der Ladungsdelokalisation über 9 Zentren – weniger nucleophil ist als Cyclopentadienid, das sich unter ähnlichen Bedingungen mit zahlreichen Essigsäure-(1-bromalkyl)estern sowie den analogen Essigsäure-(1-chloral-kyl)estern umsetzt [18].

2.2. Umsetzung von 1 und 2 mit Carbeniumionen. Durch Heteroatome stabilisierte Carbeniumionen lassen sich nach Schema 3 mit den Cyclononatetraeniden 1 und 2 bei tiefen Temperaturen umsetzen [2]. Diese Sequenz wurde von Hafner und Tappe [19] erstmals zur Synthese von 10,10-Bis(dimethylamino)nonafulven ausgenutzt⁷). Solange die Reaktionsgeschwindigkeit im Temperaturbereich von -20 bis -30 °C genügend gross ist, empfiehlt sich der Einsatz von all-cis-CNT⁻ (1), da dann die gewünschten Cyclononatetraene 4 ohne störende Nebenprodukte in spektroskopisch reiner Form isoliert werden können. Die Cyclononatetraene 4e und 4g hydrolysieren sich bei der Tieftemperatur-Chromatographie (-20 °C) über nicht desaktiviertes Kieselgel teilweise zu den Estern 4f und 4h [2].

Beim Einsatz von *ccct*-Na-CNT (Na-2) lässt sich die Reaktionsgeschwindigkeit infolge der höheren nucleophilen Reaktivität von 2 erhöhen, was zur Umsetzung auch stabilisierter Carbeniumionen ausgenützt werden kann. Allerdings sind in einigen Fällen auch Nebenprodukte des Typs 9 in Kauf zu nehmen. Wie *Schema 3* zeigt, sind die

⁷) Zahlreiche weitere Versuche von *Hafner* und *Tappe* [20] ergaben bestenfalls in mässigen Ausbeuten Valenzisomere des Typs 8, jedoch keine substituierten Cyclononatetraene 4. Vermutlich wurde bei zu hohen Temperaturen aufgearbeitet.

Schema 3. Umsetzung der Cyclononatetraenide 1 und 2 mit Carbeniumionen^a)

^a) X bezeichnet die potentielle Abgangsgruppe zur Synthese von Nonafulvenen aus 4.

^b) Ausbeute nach Valenzisomerisierung $4 \rightarrow 8$.

anfallenden Bicyclo[6.1.0]nonatriene 9 präparativ meist nicht von Bedeutung und die Ausbeuten der gewünschten Cyclononatetraene 4 meist hoch. Dies ändert sich beim Umsatz von 2 mit Dimethoxycarbenium-tetrafluoroborat (11d), bei welchem das Cyclononatetraen 4d sowie der Bicyclus 9d im Verhältnis von rund 4:6 gebildet werden.

Zur Untersuchung der Faktoren, welche die Produktverteilung beeinflussen, wäre eine systematische Variation der Reaktanden sowie aller Reaktionsparameter von Interesse. Aus praktischen Gründen beschränkten wir uns vorerst auf die Variation des Elektrophils bei der Umsetzung mit 1 und 2.

Aus *Tab. 1* geht hervor, dass die Produktverteilung (und insbesondere der Gehalt an 4 und 9) deutlich von der Wahl des Elektrophils abhängig ist. Sterisch abgeschirmte bzw. elektronisch stabilisierte Ionen (11e, g, l, m) greifen *ccct*-Na-CNT (Na-2) vor allem an C(1) an, wobei 1-substituierte Cyclononatetraene 4 entstehen, während das nur durch

Elektrophil	Ausbeute [%]			Gesamtaus-	
	4	9	10	beute [%]	
11d MeO−ç-OMe BF2 ^Θ	41	59	^b)	60	
OMe Lle MeO-C-OMe BĘ⊖ ⊕	93	7	^b)	68	
llg MeO−ζ BFζΘ	92,5	6	1,5%	61	
111 MeS-SII	ca. 95	ca. 5°)	^b)	ca. 75	
Ci IIm (Me}2N-C-N(Me)2 Ci⊖ ⊕	ca. 100	^b)	^b)	42 ^d)	

Tab. 1. Produktverteilung^a) bei der Umsetzung von Elektrophilen (7 mmol) mit ccct-Na-CNT (Na-2, 7 mmol) in 20 ml abs. THF bei –20 °C

^a) Ermittelt durch Tieftemperatur-Chromatographie und ¹H-NMR-Analyse.

b) Das Valenzisomere 10 bzw. 9 konnte nicht isoliert werden.

c) Ermittelt aus dem ¹H-NMR-Spektrum des Rohprodukts.

d) Vgl. [19]. Ausbeute aus unserer Nonafulven-Ausbeute (42%) abgeschätzt.

zwei MeO-Gruppen stabilisierte und sterisch relativ kleine Carbeniumion 11d offensichtlich weniger selektiv reagiert und 2 auch an den Atomen C(4) bis C(7) angreift.

In einer zweiten Versuchsreihe wurden dieselben Kationen unter analogen Bedingungen mit all-*cis*-Li-CNT (Li-1) umgesetzt. Dabei reagierten die elektronisch und sterisch stabilisierten Kationen 111 und 11m nicht, während sich 11d, e, g mit 1 mit rund 60% Ausbeute zum Cyclononatetraen 4 umsetzten. Damit wird erneut die höhere Reaktivität von 2 (im Vergleich zu 1) unter Beweis gestellt.

2.3. Diskussion. Gemäss den in Schema 2 und 3 dargestellten Reaktionen sind eine ganze Reihe von substituierten Cyclononatetraenen 4 zugänglich geworden, die als potentielle Nonafulven-Vorläufer in Frage kommen. Leider wird der präparative Spielraum durch die thermische Instabilität der Verbindungen 4, die Temperaturen um -20 °C erforderlich machen, eingeschränkt. Obwohl bisher keine systematischen (und insbesondere keine kinetischen) Untersuchungen vorliegen, lassen die vorliegenden Ergebnisse folgende Schlüsse zu:

Offensichtlich ist die Produktverteilung in erheblichem Ausmass von der Struktur der Reaktanten sowie der Wahl der Reaktionsparameter abhängig. Während *ccct*-CNT⁻(2) deutlich nucleophiler ist als all-*cis*-CNT⁻(1), reagiert 1 ausschliesslich zu all-*cis*-Cyclononatetraenen 4, während ausgehend von 2 je nach den Bedingungen die Produkte 4, 9 (und seltener 10) isoliert werden. Dabei scheint 2 bei $S_N 2$ -ähnlichen Reaktionen mit sterisch gut zugänglichen Elektrophilen (z. B. 11a) vorzugsweise mit C(1) zu reagieren, während mit sterisch abgeschirmten Elektrophilen (z. B. 11c) zunehmend C(4) bis C(7) reagieren, so dass der Gehalt an Bicyclo[6.1.0]nona-2,4,6-trienen 9 zunimmt.

Bei S_{\aleph} 1-*ähnlichen Umsetzungen* (z. B. mit Carbeniumionen) ergeben sich Hinweise darauf, dass bei unreaktiven Elektrophilen die höhere Nucleophilie von C(1) (von 2) zum Tragen kommt, während sehr reaktive Elektrophile auf Grund ihrer geringen Selektivität zunehmend auch mit C(4) bis C(7) von 2 in Reaktion treten.

Bei der präparativen Durchführung einer Reaktion empfiehlt es sich, zunächst eine Umsetzung mit all-*cis*-CNT⁻ (1) [6] bei -20 °C in THF zu versuchen (wobei die ionischen Na- oder K-Salze den Li-Salzen vorzuziehen sind). Ist die Reaktionsgeschwindigkeit zu klein, so empfiehlt sich der Einsatz von *ccct*-Na-CNT (Na-2) [6]. Tritt schliesslich auch hierbei keine Reaktion ein, so kann die Umsetzung von 2 bei +20 °C zumindest zum Nachweis der valenzisomeren Dihydroindene 8 dienen.

3. Strukturableitung der Cyclononatetraene 4. – Die Struktur der substituierten Cyclononatetraene 4 wird durch die spektroskopischen Daten belegt.

Das ¹H-NMR-Spektrum von 4d (*Fig. 1*) enthält das *s* der MeO-Gruppen bei 3,33 ppm, während das exozyklische Methinproton H–C(1') wegen der Kopplung mit H–C(1) als *d* bei 4,28 ppm liegt. H–C(1) koppelt zusätzlich mit den Protonen H–C(2) und H–C(9) und erscheint als *q*-ähnliches *m* bei 4,56 ppm, während die beiden benachbarten Vinylprotonen als angenähertes *dd* bei *ca.* 5,5 ppm erscheinen. Die Protonen H–C(3) bis H–C(8) erzeugen bei 80 MHz ein komplexes *m* im Bereich von *ca.* 5,7–6,1 ppm.

In den ¹³C-NMR-Spektren (*Tab.2*) der Cyclononatetraene **4d**, e, g und I liegen die Signale der paarweise äquivalenten Vinyl-C-Atome des Neunrings im sehr engen Intervall von 132,0–127,1 ppm. Das exozyklische C(1') erfährt beim Wechsel von **4d** zu **4e** und **4g** die erwartete Tieffeld-Verschiebung, deren Ausmass durch sterische Effekte deutlich reduziert wird. Die Abnahme der Elektronegativität von Schwefel verglichen mit Sauerstoff ist für die Hochfeld-Verschiebung von C(1') beim Übergang von **4g** zu **4l** verantwortlich.

In den Massenspektren sind die Molekularionen meist schwach erkennbar und bei Hochauflösung mit der aus der Summenformel berechneten Masse in Übereinstimmung. Die Spektren der Cyclononatetraene 4 sind wegen möglicher thermischer Reaktionen vor der Ionisierung (Zyklisierung $4 \rightarrow 8$, Elimination von Abgangsgruppen) nicht besonders aussagekräftig.

Tab. 2. ¹³C-NMR-Daten (δ in ppm relativ zu TMS) von 4d, e, g und l

4d	R CH(OMe) ₂	C(1')	C(1)	C(2) bis C	C(2) bis C(9)			
		105,4	41,9	130,9	128,6	128,0	127,2	
4e	C(OMe)3	114,0	43,9	130,9	128,0	127,7	127,1	
4g	MeO-C	122,7	45,3	130,9	128,3	127,6	127,2	
41	MeS-CS	87,9	53,9	132,0	130,6	129,1	128,2	

4. Valenzisomerisierung von 4 zu Dihydroindenen 8. – Zahlreiche Beispiele der Literatur belegen, dass Cyclononatetraene 4 bei Raumtemperatur sehr leicht einen disrotatorischen Ringschluss zu *cis*-3a,7a-Dihydroindenen 8 eingehen (vgl. z. B. [12] [13] [20] [21]). Obwohl in vielen Fällen intuitiv die in *Schema 4* gezeichnete *endo*-Anordnung formuliert wurde, blieb bisher ein stichhaltiger spektroskopischer Nachweis noch aus.

Auch die Cyclononatetraene 4 (Schema 4) gehen mit annähernd quantitativer Ausbeute und hoher Stereoselektivität die Zyklisierung $4 \rightarrow 8$ ein [2]. Dabei wurden 8d, e und g ausgehend von den spektroskopisch reinen Verbindungen 4d, e und g gewonnen. Der Ester 8f entsteht mit 90% Ausbeute beim Rühren von 8e in Et₂O in Gegenwart von Kieselgel. In analoger Weise setzten sich 4g (91% Ausbeute) oder 8g bei Raumtemperatur zu 8h um. Das Dihydroinden 8i bildet sich bei der Umsetzung von 2 mit CO₂ in

Gegenwart von 1,2-Dibromäthan, wenn das Reaktionsgemisch anschliessend über Nacht bei 20°C gerührt wird. Die analoge Umsetzung bei -20 bis -30°C führt nur zur Cyclononatetraen-carbonsäure **4k**; nach einigen Stunden bei Raumtemperatur wird mit 72% Ausbeute **8k** isoliert.

Die ¹³C-NMR-Spektren der isolierten Dihydroindene **8d** und **8g** belegen, dass mit über 95% Ausbeute nur ein Diastereomeres gebildet wird. Analog können in den ¹H-NMR-Spektren der Verbindungen **8d–k** innerhalb der NMR-Genauigkeit höchstens Spuren anderer Stereoisomerer nachgewiesen werden.

Im ¹H-NMR-Spektrum von **8k** ((D_6)Aceton, 100 MHz) bilden die 6 Vinylprotonen ein komplexes *m* zwischen 5,5 und 6,0 ppm, während das *ABX*-System der aliphatischen Methinprotonen im Bereich von 3,2–3,8 ppm durch zusätzliche Kopplungen kompliziert wird. Das Carboxyl-Proton erscheint als breites Signal bei 10,7 ppm.

Zur Festlegung der Lage der Carboxylgruppe an C(1) empfiehlt sich die Entkopplung der Vinylprotonen. So reduziert sich das Hochfeld-Multiplett näherungsweise zu einem *ABX*-System (*Fig.2*). Aus den Aufspaltungen geht hervor, dass H-C(7a) bei höchstem Feld liegt (3,30 ppm) und mit den beiden vicinalen Protonen mit *ca.* 12 Hz und 7 Hz

Fig. 2. ¹*H-NMR-Spektrum* ((D₆)Aceton, 100 MHz) von cis-3a,7a-Dihydroinden-1-endo-carbonsäure (**8k**). Eingerückt rechts: Alkyl-Multiplett bei Einstrahlung bei ca. 5,8 ppm. Eingerückt links: Computer-Simulation mit den δ -Werten 3,67 (H-C(3a)), 3,47 (H-C(1)) und 3,30 ppm (H-C(7a)), sowie den Kopplungskonstanten J(1, 7a) = 7,0, J(1, 3a) = 2,6, J(3a, 7a) = 11,9 Hz.

koppelt. Demnach liegt H-C(3a) bei 3,67 ppm, H-C(1) bei 3,47 ppm. Durch Computer-Simulation lässt sich die richtige Lösung ermitteln (*Fig. 2*). Die grosse vicinale Kopplung J(3a, 7a) = 11,9 Hz beweist im Vergleich mit Literaturwerten ([12] [20] [21]) die *cis*-Stellung der Protonen an der Ringverknüpfungsstelle. Ebenso entspricht die grosse Kopplung J(1, 7a) = 7,0 Hz einer *cis*-Stellung von H-C(1) und H-C(7a). Bei einer *trans*-Anordnung wäre die Kopplung auf Grund des ungünstigen Diederwinkels sehr klein. Daraus folgt, dass die Carbonsäure **8k** in der *endo*-Anordnung vorliegt. Aus spektroskopischen und chemischen Vergleichen (z. B. Hydrolyse von **8e** zu **8f** bekannter Konfiguration) kann die *endo*-Konfiguration aller Verbindungen **8d**-k abgeleitet werden. Zur Erklärung dieses Befundes wären genaue Kenntnisse über das konformative Verhalten von substituierten Cyclononatetraenen in Lösung von Interesse, die bis heute noch fehlen [22].

Wir danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (Projekte Nr. 2.621-0.80 und 2.402-0.82) für die Unterstützung der Arbeit und der Badischen Anilin- und Sodafabrik für die grosszügige Spende von Cyclooctatetraen.

Experimenteller Teil

1. Allgemeines. – Die Spektren wurden auf folgenden Geräten registriert: UV: Varian-Techtron 635 und Perkin-Elmer 554. IR: Perkin-Elmer 399B. NMR: Varian EM-360L und Varian XL-100, Bruker WP-80. MS: Varian-Mat CH5-DF. Zur Aufnahme von Tieftemperatur-Spektren vgl. [23]. Abkürzungen: P = Petroläther; i.V. = im Vakuum; i.RV. = im Rotationsverdampfer; i.HV. = im Hochvakuum ($10^{-4}-10^{-5}$ Torr); RT. = Raumtemperatur. Die Elementaranalysen verdanken wir Herrn Dr. Kurt Eder, Institut de chimie pharmaceutique, Service de microchimie, Quai Ernest-Ansermet 30, 1211 Genève 4.

2. Spezielle Arbeitsverfahren. – Weitere Apparaturen und Reinigungsverfahren bei Tieftemp.-Reaktionen vgl. [23]. Alle Reaktionen wurden mit abs. Reagenzien in abs. Lsgm. und unter N_2 durchgeführt.

2.1. Allgemeines Vorgehen bei der Synthese von Cyclononatetraenen. Falls nicht anderes vermerkt ist, werden alle Synthesen in einem 50 ml Dreihalskolben mit Magnetrührer, Tieftemperatur-Thermometer, kühlbarem Tropftrichter (oder Sovirel-Durchführung mit Septum zum Durchstechen) und N₂-Überleitung durchgeführt. Die Zugabe des Cyclononatetraenids erfolgt mit einem kühlbaren Tropftrichter. Kleinere Mengen (2 ml) werden mit Hilfe einer Spritze durch das Septum zugegeben. Zur Kontrolle des Reaktionsverlaufs werden 0,4 ml der kalten Reaktionslsg. unter Inertgas mittels Spritze oder Pipette aufgenommen, rasch in ein kaltes NMR-Röhrchen umgefüllt und sogleich im ¹H-NMR-Gerät bei RT. vermessen. Beträgt die Gesamtdauer der Operation – von der Probeentnahme bis zur beendeten Spektrenaufnahme – nicht mehr als 4 min, so sind die Messungen zuverlässig. THF als Lösungsmittel stört im olefinischen Bereich nicht.

2.2. Aufarbeitung von temperaturempfindlichen Substanzen. Die reaktiven Cyclononatetraene 4 erlauben keine Aufarbeitung in H₂O. Zur Abtrennung der Salze wird über eine doppelwandige, auf -25° gekühlte Chromatographiesäule filtriert, welche bei einem Fassungsvermögen von ca. 100 g Kieselgel nur 25 g Kieselgel (Merck Nr. 7734) oder Alox (Camag Nr. 5016A) sowie 35 g Seesand enthält. Über dem Seesand befinden sich ca. 30 ml Pentan/Et₂O 1:1. Die kalte Reaktionslsg. wird bei -25° mit N₂ durch einen Teflonschlauch übergedrückt und mit Hilfe eines Glasstabs mit dem Seesand innig gemischt. Dabei fallen die Salze aus, worauf mit Pentan/Et₂O die rasche wandernde (meist gelbe) Zone eluiert wird, während die braunen Verunreinigungen am Säulenanfang verbleiben.

2.3. Säulenchromatographie temperaturempfindlicher Substanzen. Säule: Je nach Substanzmenge werden Säulen mit Kühlmantel verschiedener Länge und Durchmesser verwendet. Mindestens die 20fache Menge Adsorbens (bez. Rohprodukt) wird als Aufschlämmung eingefüllt. Das Verhältnis von Länge zu Innendurchmesser der Säule soll mindestens 10:1 betragen. Temperatur: Es wird bei +20° bis -55° chromatographiert. Zur Kühlung dient ein Kryostat Lauda 605 mit EtOH als Kühlflüssigkeit. Entwässerung des Kieselgels: Bei sehr wasserempfindlichen Substanzen wird das Kieselgel in einem grossen Kolben 1 h bei 170°/0,5 Torr getrocknet. Man lässt unter N_2 abkühlen, gibt dann soviel Elutionsmittel zu, dass ein dünnflüssiger Brei entsteht, der wie üblich in die Säule

eingefüllt wird. Desaktivierung des Kieselgels: Bei sehr empfindlichen Substanzen wird dem Kieselgel nach dem Entwässern, Abkühlen und Aufschlämmen 5 Gew.-Proz. (bez. Kieselgel) Et_3N zugesetzt. Die Kieselgel-Aufschlämmung wird 15 min unter N_2 i. RV. eingeengt. Danach wird 2 h i. RV. bei 130°/0,5 Torr erhitzt und nicht gebundenes Et_3N entfernt. Man lässt unter N_2 abkühlen, gibt anschliessend soviel Elutionsmittel zu, dass ein dünnflüssiger Brei entsteht, der wie üblich auf die Säule aufgetragen wird. Danach wird solange eluiert, bis das Eluat aminfrei ist (Geruch). Elution: Man chromatographiert unter N_2 mit einer für jeden Versuch zu optimierenden Laufgeschwindigkeit und fängt das Eluat im CO₂-Cellosolve-Kältebad unter N_2 auf. Angegebene Lsgm.-Mengen und R_{Γ} -Werte sind als Richtwerte zu betrachten.

2.4. Umfüllstationen. Beim Arbeiten mit temperatur- oder luftempfindlichen Stoffen erweist sich die Installation von 2–3 sog. Umfüllstationen am Arbeitsplatz als vorteilhaft: An einem Stativ mit Muffe und Klammer wird ein Zweihals-Aufsatz (NS 14,5) mit N₂-Überleitung (auf dem seitlichen Aufsatz) befestigt. Die zweite obere Öffnung wird mit einem Schliffstopfen verschlossen, der untere Schliff bleibt frei und wird von N₂ durchspült. An diesen Schliff wird der Kolben mit empfindlichem Inhalt (der dabei im Kühlbad verbleibt) angeschlossen. An der zweiten Station kann nun ein leerer Kolben vorgekühlt, an der dritten vorgekühltes Lsgm. aufbewahrt werden. Auf diese Weise lassen sich bei tiefer Temp. Substanzmengen aufteilen, Lösungen von Niederschlägen abtrennen, Lösungen herstellen und verdünnen *usw.* Verwendete Geräte sind vor Gebrauch zu trocknen und mit N₂ zu spülen.

2.5. Zentrifugation. Die zu trennende Suspension wird an der Umfüllstation (2.4) bei -30° bis -40° in ein 50-ml-Schliffzentrifugenglas (NS 14,5) umgefüllt, mit Schliffstopfen und Klammer versehen und in die auf -30° gekühlte Zentrifuge (Minifuge Heräus-Christ) gestellt. Man zentrifugiert 10-15 min mit ca. 4000 U/min. Die überstehende Lsg. wird an der Umfüllstation mittels Vollpipette mit Wattebausch abgesaugt, oder rasch in einen vorgekühlten Kolben abdekantiert.

2.6. Herstellung von Carbeniumsalzen. Schwerlösliche Carbeniumsalze werden in einer N₂-Fritte hergestellt (vgl. Fig. 7 in [23]).

3. Synthese der Cyclononatetraenide 1 und 2. – 3.1. Gemisch aus Lithium-cyclononatetraenid(Li-CNT; Li-1) und cis, cis, cis, cis, trans-Lithium-cyclononatetraenid(ccct-Li-CNT; Li-2) aus cis-9-anti-Chlorbicyclo[6.1.0]nona-2,4,6-trien (9, R=Cl). Nach [15] (abgeändert und optimierte Vorschrift nach Katz und Garratt [3]).

3.2. Li-CNT (Li-1). Nach Boche et al. [7], jedoch mit weniger MeOH: Portionen zu 10 ml einer nach 3.1 bereiteten THF-Lsg. enthaltend ca. 2 mmol Li-1 und 4 mmol Li-2, werden mit einer THF-Lsg. von 0,2 mmol MeOH in einem verschlossenen 25-ml-Rundkolben mit Magnetrührer während 48 h mit ca. 450 U/min gerührt. Dabei isomerisiert 2 zu 1.

3.3. Dinatrium-cyclooctatetraenid. Nach [15] (Die Original-Vorschrift [3] wurde optimiert).

3.4. cis-9- anti-Methoxybicyclo[6.1.0]nona-2,4,6-trien (9, R=OCH₃). Optimierte Vorschrift nach [3]. In einem ausgeheizten mit N₂ gespülten 1-I-Schmizo-Kolben mit KPG-Rührer, Thermometer, 250-ml-Tropftrichter mit Druckausgleich und Rückflusskühler mit N₂-Überleitung werden zu 108 mmol Dinatrium-cyclooctatetraenid in 250 ml THF innert 90 min 14,4 ml (162 mmol) 1,1-Dichlor-dimethyläther in 200 ml THF so zugetropft, dass die Reaktionstemp. 25° nicht übersteigt. Die braune Suspension wird 12 h bei RT. gerührt, sodann portionenweise zu einer intensiv gerührten Aufschlämmung von 180 g NaHCO₃ in 250 ml H₂O gegeben. Das zweiphasige Gemisch wird in einem 1-I-Becherglas *ca.* 30 min gerührt, bis die Gasentwicklung beendet ist. Danach wird 5mal mit 125 ml Et₂O ausgeschüttelt. Die vereinigten Et₂O-Phasen werden 2mal mit je 125 ml ges. NaCl-Lsg. in H₂O gewaschen, 1 h mit Na₂SO₄ unter Rühren getrocknet, filtriert und i.V. (*ca.* 12 Torr) eingeengt. Das gelbbraune Produkt wird über eine 20-cm-*Vigreux*-Kolonne i. HV. destilliert; zur Verhinderung von Siedeverzügen wird mit dem Magnet-rührer intensiv gerührt. Nach einem gelben Vorlauf mit Sdp. 28–30° (0,5 g Cyclooctatetraen): 11,3 g (71%) blassgelbes Öl 9 (R=OCH₃) mit Sdp. 28–30°. Bei 1,1 Torr siedet der Vorlauf bei 30°, die Hauptfraktion bei 54–56°. Das Produkt ist bei -30° monatelang haltbar.

3.5. ccct-*Na-CNT (Na-2)*. Leicht modifizierte Vorschrift nach [6]. In einem ausgeheizten 200-ml-Sulfierkolben mit Tieftemp.-Thermometer, 10-ml-Tropftrichter mit Druckausgleich, N₂-Überleitung und grossem Magnetrührer werden 75 mmol Na-Suspension [24] in 50 ml THF vorgelegt. Man kühlt auf -20° und tropft 3,7 g (25 mmol) 9 (R=OCH₃) unter Rühren so langsam zu, dass die Innentemp. -10° nicht übersteigt. Es entsteht eine gelbe Suspension. Nach 4 h Rühren bei -20° wird mittels ¹H-NMR kontrolliert, ob die Reaktion beendet ist (bei langen Reaktionszeiten kann die Isomerisierung $2 \rightarrow 1$ einsetzen [7]). Die Suspension wird mit N₂ durch einen dicken Teflon-Schlauch in Zentrifugengläser gedrückt und 5 min verschlossen bei 0° und 3000 U/min zentrifugiert. Die überstehende braune Lsg. wird mit N₂ durch einen Teflon-Schlauch in ein ausgeflammtes und mit N₂ gespültes Vorratsgefäss gedrückt. Durch genaues Einwägen von Benzol (*ca.* 15 mg) oder Pyrazin in ein trocknes NMR-Röhrchen zusammen mit 0,5 ml *ccct*-Na-CNT-Lsg. kann der relative Anteil an Na-1 und Na-2 im ¹H-NMR bestimmt werden. Die Lsg. enthält üblicherweise *ca.* 0,4 mmol/ml Na-2 und *ca.* 0,01 mmol/ml Na-1 [7]. **4.** Synthese der Cyclononatetraene 4. – 4.1. Essigsäure-(2,4,6,8-cyclononatetraenyl)methylester (**4b**)⁸). Zu 1,67 g (10 mmol) reinem Essigsäure-(1-bromäthyl)ester (**11b** [25]) werden bei -25° 12,1 ml einer auf -25° gekühlten, 0,66M Lsg. von Li-**1** (8 mmol) in THF langsam getropft. Nach 2 h Rühren bei -20° wird die Reaktionslsg. über 30 g Alox (basisch, Akt. I) und 30 g Seesand bei -30° filtriert und mit P/Et₂O 1:1 rasch eluiert. Nach dem Einengen des gelben Eluats verbleibt ein gelbes Öl, das in wenig P/Et₂O gelöst und auf eine mit 50 g Kieselgel gefüllte Säule aufgetragen wird. Bei -55° wird mit Pentan chromatographiert, bis Cyclononatetraen abgetrennt worden ist. Darauf wird die gelbe Zone (R_f ca. 0,24 in P/Et₂O 1:1) mit P/Et₂O 20:1 eluiert. Nach dem Einengen der DC-reinen Fraktionen von ca. 120 ml i. RV. bei -25°/1 Torr bleiben 900 mg (61%) gelbes Öl **4b**. ¹H-NMR (80 MHz, CDCl₃, -25°): 6,13-5,20 (mehrere m, 8H); 4,98 (m, 1H); 4,48 (m, 1H); 2,07 (s, 3H); 1,18 (d, $J = 6,5, 3H)^9$). Anal. ber. für C₁₃H₁₆O₂ (204,26): C 76,44, H 7,90; gef.: C 76,40, H 8,00.

4.2. Essigsäure-(2,4,6,8-cyclononatetraenyl)phenylmethylester (4c)⁸). Zu einer Lsg. von 2,98 g (13 mmol) Essigsäure- $(\alpha$ -brombenzyl)ester (11c [25]) in 4 ml THF werden bei -20° 12 ml einer auf -25° gekühlten 0,96M Lsg. von Li-1 (11,5 mmol) in THF getropft. Die kalte Reaktionslsg. wird nach 2 h Rühren bei -20° auf eine Säule mit 20 g Kieselgel und 35 g Seesand gegeben und mit P/Et₂O 1:1 rasch eluiert. Das gelbe Eluat wird i. V. bei -20° eingeengt und bei -60° mit P über 80 g Kieselgel chromatographiert, bis Cyclononatetraen abgetrennt worden ist. Darauf wird die gelbe Zone mit P/Et₂O eluiert. Nach dem Einengen i. RV. bei $-20^{\circ}/1$ Torr bleiben blassgelbe Kristalle zurück, die bei -20° in ca. 20 ml P/Et₂O 1:1 gelöst und bei -60° umkristallisiert werden: 2 g (65%) weisse Kristalle von 4c. ¹H-NMR (100 MHz, CDCl₃, -20°): 7,27 (m, 5H); 6,0–5,15 (mehrere m, 9H); 4,92 (m, 1H); 2,04 (s, 3H)⁹).

4.3. $1-(Dimethoxymethyl)-2,4,6,8-cyclononatetraen (4d)^8$). Zu 528 mg (3,26 mmol) Dimethoxycarbenium-te-trafluoroborat (11d) [26] werden bei -35° 3,7 ml einer auf -25° gekühlten 0,88M Lsg. von Li-1 (3,26 mmol) in THF innert 20 min getropft. Nach 2 h Rühren bei -20° wird die rötlichbraune Reaktionslsg. auf eine Säule mit 30 g Alox (basisch, Akt. I) und 35 g Seesand gegeben und bei -20° mit P/Et₂O 1:1 rasch eluiert. Nach dem Einengen des Eluats (*ca.* 130 ml) i. RV. bei $-20^{\circ}/1$ Torr verbleiben 730 mg gelbes Öl, das in wenig Et₂O gelöst und auf eine mit 30 g desakt. Kieselgel gefüllte Säule bei -60° aufgetragen wird. Man entwickelt mit P, bis alle an der Front laufenden Nebenprodukte eluiert sind. Sodann wird die gelbe Zone (R_f (P/Et₂O 10:1) *ca.* 0,25) mit 90 ml Pentan/Et₂O 10:1 eluiert. Nach dem Einengen i. RV. bei $-25^{\circ}/1$ Torr verbleiben 390 mg (62%) gelbes Öl 4d. ¹H-NMR (80 MHz, CDCl₃, -25°); 6,1–5,7 (mehrere m, 6H); 5,5 (m, 2H); 4,56 (m, 1H); 4,28 (d, J = 7,5, 1H); 3,33 (s, 6H)⁹).

4.4. 1-(Dimethoxymethyl)-2,4,6,8-cyclononatetraen (4d) und cis-9-anti-(Dimethoxymethyl)bicyclo[6.1.0]-nona-2,4,6-trien (9d)⁸). Zu 0,65 g (4,05 mmol) 11d [26] werden innert 0,5 h 10,2 ml einer auf -20° gekühlten 0,35M Lsg. von Na-2 (3,56 mmol) in THF getropft. Nach 2,5 h Rühren bei -25° wird bei -25° auf eine Säule mit 30 g Alox (basisch, Akt. 1) und 35 g Seesand gegeben und mit P/Et₂O 1:1 bei -25° rasch eluiert. Nach dem Einengen i. RV. bei $-25^{\circ}/1$ Torr verbleiben 874 mg gelbes Öl, das in wenig CHCl₃ gelöst und auf eine Säule mit 40 g desakt. Kieselgel aufgetragen wird. Man chromatographiert bei -60° zunächst mit P, bis alle an der Front laufenden Nebenprodukte eluiert sind, dann mit P/Et₂O 15:1. Die gelbe Zone wird in 40-ml-Fraktionen aufgefangen. Die ersten 160 ml enthalten 148 mg 4d, die nächsten 80 ml 29 mg 4d und 95 mg 9d, die letzen 150 ml 165 mg 9d. Total werden 178 mg (24,5%) 4d und 261 mg (34,5%) 9d erhalten. Die Fraktion mit reinem 9d wird i. RV. bei $-25^{\circ}/1$ Torr eingeengt und bei $60^{\circ}/10^{-2}$ Torr destilliert. Man isoliert 9d als farbloses Öl¹⁰. ¹H-NMR (80 MHz, CDCl₃): 6,2-5,7 (m, 6H); 4,28 (d, J = 5,0, 1H); 3,36 (s, 6H); 1,54 (d, J = 5,8, 2H); 0,81 (dt, J = 5,0, J' = 5,8, 1H)⁹.

4.5. 1-(Trimethoxymethyl)-2,4,6,8-cyclononatetraen (4e)⁸). Zu 768 mg (4 mmol) Trimethoxycarbenium-tetrafluoroborat (11e) [28] werden unter Rühren bei -25° 4,6 ml einer auf -25° gekühlten 0,86M Lsg. von Li-1 (4 mmol) in THF getropft. Nach 3,5 h bei -20° wird die kalte Reaktionslsg. auf eine Säule mit 30 g Alox (basisch, Akt. I) und 35 g Seesand gegeben und rasch mit P/Et₂O 1:1 eluiert. Das gelbe Eluat wird i. RV. eingeengt und bei -55° über 30 g desakt. Kieselgel bei -55° mit P/Et₂O 20:1 entwickelt. Sobald das Cyclononatetraen eluiert ist wird mit P/Et₂O chromatographiert und die gelbe Zone bei -60° aufgefangen. Nach dem Einengen i. RV. bei $-20^{\circ}/1$ Torr verbleiben 551 mg (62°) gelbes Öl $4e^{11}$. ¹H-NMR (80 MHz, CDCl₃, -25°): 6,1-5,5 (*m*, 8H); 4,70 (*m*, 1H); 3,43 (s, 9H)⁹).

4.6. l-(Trimethoxymethyl)-2,4,6,8-cyclononatetraen (4e) und (cis-Bicyclo[6.1.0]nona-2,4,6-trien-9-antiyl)carbonsäure-methylester (9f)⁸). Zu 1,36 g (7,1 mmol) 11e [28] werden bei -25° 20,3 ml einer auf -25° gekühlten 0,35M Lsg. von Na-2 (7,1 mmol) in THF innert 2 h getropft. Nach weiteren 3 h bei -20° wird die Reaktionslsg. bei

⁸) Man beachte die speziellen Arbeitsverfahren, und insbesondere 2.1.

⁹) Weitere spektroskopische Daten und Abb. der Spektren: [2]. ¹³C-NMR von 4d, e, g und l vgl. Tab. 2.

¹⁰) Verbindungen 4d und 9d sind mittels DC ($R_f(P/Et_2O 10:1)$ ca. 0,29) nicht unterscheidbar. Eine GC-Trennung ist wegen der Isomerisierung $4 \rightarrow 8$ (bei 20°) und $9 \rightarrow 8$ (beim Erhitzen [27]) unmöglich.

¹¹) Bei der Chromatographie von 4e an nicht desaktiviertem Kieselgel bei -10° entsteht praktisch quantitativ der Methylester 4f [12].

 -25° über 30 g Alox (basisch, Akt. 1) und 35 g Seesand filtriert und mit P/Et₂O 1:1 eluiert. Nach dem Einengen i. RV. bei $-25^{\circ}/1$ Torr verbleibt ein gelbes Öl, das in wenig P/Et₂O gelöst und bei -55° auf eine mit 45 g desakt. Kieselgel gefüllte Säule aufgetragen wird. Es wird mit P entwickelt, bis die unpolaren Nebenprodukte eluiert sind, sodann mit P/Et₂O 10:1 chromatographiert. Die eluierte gelbe Zone wird bei -60° aufgefangen. Nach dem Einengen i. RV. bei $-20^{\circ}/1$ Torr verbleibt 1 g (63%) gelbes Öl 4e. ($R_{\rm f}$ (P/Et₂O 10:1) ca. 0.25).

Nach dem Auffangen der gelben Zone wird die Säule mit P/Et₂O 1:1 bei -20° erschöpfend eluiert. Nach dem Einengen i.RV. verbleibt ein gelbes Öl, das in 5 ml Et₂O gelöst und zur Hydrolyse **9e** \rightarrow **9f** mit 2 g Kieselgel 5 h bei RT. gerührt wird. Nach Filtration wird i. RV. bei 20°/10 Torr eingeengt und über 20 g Kieselgel mit P/Et₂O 5:1 bei RT. chromatographiert. Nach dem Einengen verbleiben 60 mg (4,8%) blassgelbes Öl **9f**. ¹H-NMR (60 MHz, CDCl₃): 6,2–5,7 (*m*, 6H); 3,72 (*s*, 3H); 2,15 (*d*, *J* = 5,0, 2H); 1,38 (*t*, *J* = 5,0, 1H)⁹).

4.7. 1-(2-Methoxy-1,3-dioxolan-2-yl)-2,4,6,8-cyclononatetraen (4g)⁸). Zu 0,8 g (4,2 mmol) 2-Methoxy-1,3-dioxolan-2-ylium-tetrafluoroborat (11g) [26] werden bei -40° 6,2 ml einer auf -25° gekühlten 0,68m Lsg. von Li-1 (4,2 mmol) in THF innert 10 min getropft. Nach 3,5 h Rühren bei -25° wird die Suspension bei -25° über 25 g Alox (basisch, Akt. I) und 25 g Seesand filtriert und rasch mit P/Et₂O 1:1 eluiert. Das eingeengte gelbe Eluat wird bei -60° an 30 g desakt. Kieselgel mit Pentan entwickelt, bis Cyclononatetraen abgetrennt worden ist (Kontrolle im DC). Die gelbe Zone ($R_{f}(P/Et_{2}O 1:1)$ ca. 0,21) wird sodann mit P/Et₂O 1:1 eluiert. Nach dem Einengen i.RV. bei $-25^{\circ}/1$ Torr verbleiben blassgelbe Kristalle, die im Minimum P/Et₂O 1:1 bei -10° gelöst und über Nacht bei -60° umkristallisiert werden. Nach dem Absaugen der Mutterlauge: 0,5 g (54%) farblose Kristalle 4g. ¹H-NMR (100 MHz, CDCl₃, -40°): 6,2–5,5 (m, 8H); 4,72 (m, 1H); 4,17 (m, 4H); 3,32 (s, 3H)⁹).

Bei der analogen Umsetzung von 2,21 g (11,8 mmol) 11g mit 10,7 mmol (Na-2)-Lsg. in THF und Aufarbeitung [2] werden 1,3 g (55%) farblose Kristalle 4g und 80 mg (3,6%) farbloses $\ddot{O}l$ 9h⁹) isoliert. Das Rohprodukt enthält ausserdem 1,4% 8h und 0,9% 10h.

4.8. $1-(2-Methylthio-1,3-dithiol-2-yl)-2,4,6,8-cyclononatetraen (41)^8$). Zu 1,17 g (4,28 mmol) 2-Methylthio-1,3dithiolium-iodid (111 [29]) werden bei -20° 15,3 ml einer 0,28M Lsg. von Na-2 (4,28 mmol) in THF innert 0,5 h getropft. Nach 4 h Rühren wird bei -20° über 30 g Alox (basisch, Akt. I) und 35 g Seesand filtriert und rasch mit P/Et₂O 1:1 eluiert. Das orange Eluat (*ca.* 170 ml) wird i. RV. bei $-20^{\circ}/1$ Torr eingeengt. Das viskose Öl wird in wenig CH₂Cl₂ gelöst und bei -30° auf eine mit 30 g Kieselgel gefüllte Säule aufgetragen. Man chromatographiert bei -30° mit Pentan, bis Cyclononatetraen abgetrennt worden ist. Darauf wird mit Pentan/Et₂O 20:1 eluiert, und alle 4I-haltigen Fraktionen (R_f (Pentan/Et₂O 30:1) *ca.* 0,36) werden vereinigt und i. RV. bei $-25^{\circ}/1$ Torr eingeengt: 800 mg (70%) hellgelbe DC-reine Kristalle von 4I. ¹H-NMR (80 MHz, CDCl₃, -25°): 6,1–5,6 (mehrere *m*, 10H); 5,44 (*m*, 1H); 2,31 (*s.* 3H)⁹).

5. Valenzisomerisierung der Cyclononatetraene $4 \rightarrow 8$. – 5.1. Allgemeine Arbeitsvorschrift. Reines Cyclononatetraen 4 (50–100 mg) wird in 0,5–1 ml CDCl₃ unter Ar während 5 h bei RT. stehen gelassen. Dabei entsteht quantitativ das 3a,7a-Dihydroinden 8, das nach Einengen i.RV. ohne Reinigung spektroskopisch charakterisiert wird.

Nach dieser Vorschrift wurden cis-1-endo-(Dimethoxymethyl)-3a,7a-dihydroinden (8d), cis-1-endo-(Trimethoxymethyl)-3a,7a-dihydroinden (8e), und cis-1-endo-(2-Methoxy-1,3-dioxolan-2-yl)-3a,7a-dihydroinden (8g) hergestellt, deren ¹H-NMR-Spektren (80 MHz, CDCl₃) nachstehend aufgelistet sind⁹): 8d: 5,9-5,35 (mehrere m, 6H); 4,17 (d, J = 7, 1H); 3,9-3,5 (br. m, 1H); 3,38 (s, 6H); 3,2-2,7 (m, 2H). 8e: 6,0-5,3 (m, 6H); 3,8-3,0 (m, 3H); 3,31 (s, 9H). 8g: 6,0-5,3 (mehrere m, 6H); 4,4-3,9 (m, 4H); 3,9-3,5 (m, 1H); 3,4-3,0 (m, 2H); darin 3,30 (s, 3H).

5.2. cis-3a,7a-Dihydroinden-1- endo-carbonsäure-methylester (**8f**). Verbindung **4e** (80 mg, 0,36 mmol) wird nach 5.1 zu **8e** umgesetzt, in einem 25-ml-Zweihalskolben in 10 ml Et₂O gelöst und 5 h bei RT. mit 2 g Kieselgel gerührt. Nach dem Abnutschen und Einengen i.RV. bei 20°/10 Torr und Destillation im Kugelrohr bei 20°/10 Torr: 57 mg (90%) farbloses Öl **8f** [12]. ¹H-NMR (80 MHz, CDCl₃): 6,1–5,3 (mehrere *m*, 6H); 4,0–3,1 (mehrere *m*, 6H), darin 3,71 (*s*, 3H)⁹).

5.3. cis-3a,7a-Dihydroinden-1- endo-carbonsäure-(2-hydroxyäthyl)ester (8h). Verbindung 8g (70 mg, 0,32 mmol) wird nach 5.2 umgesetzt und aufgearbeitet. Destillation bei 10^{-4} Torr/60° ergibt 60 mg (91%) farbloses Öl 8h. ¹H-NMR (80 MHz, CDCl₃): 6,1-5,3 (mehrere *m*, 6H); 4,4-4,1 (*m*, 2H); 4,0-3,0 (mehrere *m*, 5H); 2,0 (br. *s*, 1H)⁹). Anal. ber. für C₁₂H₁₄O₃ (206,23): C 69,88, H 6,84; gef.: C 69,75, H 6,95.

5.4. cis-3a,7a-Dihydroinden-1-endo-carbonsäure (8k) und cis-3a,7a-Dihydroinden-1-endo-carbonsäure-(2bromäthyl)ester (8i). In einem 50-ml-Dreihalskolben mit Tieftemp.-Thermometer, N₂-Überleitung, Magnetrührer und Gaseinleitungsrohr wird in eine Lsg. von 7 ml 0,4M Na-2 (2,8 mmol) in THF bei -30° während 30 min CO₂ eingeleitet. Dabei färbt sich die Lsg. gelbbraun und ein weisser Niederschlag fällt aus. Nach Zugabe von 500 mg (2,66 mmol) 1,2-Dibromäthan und 300 mg 18-Kronenäther-6 löst sich der Niederschlag teilweise auf. Nach 6 h bei -20° wird bei -30° mit Et₂O versetzt, zentrifugiert, abdekantiert und bei -20°/1 Torr eingeengt. Das gelbe Öl

 $^{-20}$ wild bei $^{-30}$ mit $^{+20}$ versetzt, zehrindigert, abdekandert und bei $^{-20}$ /1 fohr eingeengt. Das gebe of besteht laut ¹H-NMR aus **4a** und 1,2-Dibromäthan. Der Zentrifugenrückstand (**4k**) wird in 1M KH₂PO₄ in H₂O gelöst und 3mal mit 30 ml Et₂O extrahiert. Die vereinigten Et₂O-Lösungen werden einmal mit wenig H₂O gewaschen, getrocknet (MgSO₄), filtriert und bei 30°/l Torr i. RV. eingeengt. Die blassgelben Kristalle werden bei 80°/0,02 Torr sublimiert: 163 mg (72%) weisse Kristalle von **8k**. ¹H-NMR: vgl. *Fig. 2*.

Derselbe Ansatz wird nach Zugabe des Kronenäthers 6 h bei -20° , sodann über Nacht bei RT. gerührt, mit 1M KH₂PO₄/H₂O versetzt und 3mal mit je 30 ml Et₂O ausgeschüttelt. Die vereinigten Et₂O-Phasen werden mit H₂O gewaschen, getrocknet (MgSO₄), filtriert und i. RV. bei 20°/1 Torr eingeengt, sodann wird das braune Öl an 35 g Kieselgel bei RT. mit P/Et₂O 5:1 chromatographiert. Das Eluat wird i. RV. bei 20°/10 Torr eingeengt: 192 mg (51%) blassgelbes Öl **8i**. ¹H-NMR (80 MHz, CDCl₃): 6,0-5,3 (mehrere *m*, 6H); 4,43 (*t*, *J* = 6, 2H); 3,9-3,1 (mehrere *m*, 5H), darin 3,52 (*t*, *J* = 6, 2H)⁹).

LITERATURVERZEICHNIS

- [1] A. Escher, M. Neuenschwander, Angew. Chem. 1984, 96, 983; Int. Ed. 1984, 23, 973.
- [2] G. Sabbioni, Dissertation, Bern, 1982.
- [3] T.J. Katz, P.J. Garratt, J. Am. Chem. Soc. 1963, 85, 2852; ibid. 1964, 86, 5194.
- [4] E.A. LaLancette, R.E. Benson, J. Am. Chem. Soc. 1963, 85, 2853; ibid. 1965, 87, 1941.
- [5] E. Hückel, Z. Phys. 1931, 70, 204.
- [6] a) G. Boche, D. Martens, W. Danzer, Angew. Chem. 1969, 81, 1003; b) G. Boche, H. Weber, D. Martens, A. Bieberbach, Chem. Ber. 1978, 111, 2480.
- [7] G. Boche, A. Bieberbach, Tetrahedron Lett. 1976, 1021; Chem. Ber. 1978, 111, 2850.
- [8] P. Radlick, G. Alford, J. Am. Chem. Soc. 1969, 91, 6529.
- [9] A.G. Anastassiou, E. Reichmanis, R.C. Griffith, J. Chem. Soc., Chem. Commun. 1972, 913.
- [10] K. Hafner, S. Braun, T. Nakazawa, H. Tappe, Tetrahedron Lett. 1975, 3505.
- [11] G. Boche, H. Böhme, D. Martens, Angew. Chem. 1969, 81, 565.
- [12] F. Heidenhain, Dissertation, München, 1979; G. Boche, F. Heidenhain, B. Staudigl, Angew. Chem. 1979, 91, 228.
- [13] G. Boche, F. Heidenhain, Angew. Chem. 1978, 90, 290; J. Am. Chem. Soc. 1979, 101, 738; G. Boche, F. Heidenhain, W. Thiel, R. Eiben, Chem. Ber. 1982, 115, 3167.
- [14] M. Neuenschwander, A. Frey, Chimia 1974, 28, 117.
- [15] M. Neuenschwander, W. Rutsch, P. Engel, Tetrahedron Lett. 1979, 233; W. Rutsch, A. Frey, M. Neuenschwander, P. Engel, Helv. Chim. Acta 1979, 62, 718.
- [16] G. Boche, M. Bernheim, D. Lewaldt, B. Ruisinger, Tetrahedron Lett. 1979, 4285.
- [17] R.W. Millar, unveröffentl. Versuche, Bern 1979; G. Sabbioni, unveröffentl. Versuche, Bern, 1981.
- [18] M. Neuenschwander, R. Iseli, Helv. Chim. Acta 1977, 60, 1061.
- [19] K. Hafner, H. Tappe, Angew. Chem. 1969, 81, 564.
- [20] H. Tappe, Dissertation, TH Darmstadt, 1972.
- [21] J. E. Baldwin, A. H. Andrist, R. K. Pinschmidt, J. Am. Chem. Soc. 1972, 94, 5845; A. G. Anastassiou, R. C. Griffith, J. Am. Chem. Soc. 1973, 95, 2379; J. Chem. Soc., Chem. Commun. 1971, 1301; Tetrahedron Lett. 1973, 3067; G. Boche, G. Schneider, ibid. 1974, 2449; J. Am. Chem. Soc. 1971, 93, 279; G.J. Fouken, W. Moran, Chem. Ind. 1963, 1841.
- [22] G. Buemi, A. Nicolosi, F. Zuccarello, D. Grasso, J. Mol. Struct. 1979, 55, 39.
- [23] W.K. Schenk, R. Kyburz, M. Neuenschwander, Helv. Chim. Acta 1975, 58, 1099.
- [24] H. Schaltegger, Helv. Chim. Acta 1962, 45, 1368.
- [25] M. Neuenschwander, P. Bigler, K. Christen, R. Iseli, H. Mühle, Helv. Chim. Acta 1978, 61, 2047; P. Bigler, H. Mühle, M. Neuenschwander, Synthesis 1978, 593.
- [26] A. Gerlach, Dissertation, Marburg, 1969.
- [27] E. Vogel, H. Kiefer, Angew. Chem. 1961, 73, 548; ibid. 1962, 74, 829.
- [28] H. Meerwein, K. Bodenbrenner, P. Borner, F. Kunert, K. Wunderlich, Liebigs Ann. Chem. 1960, 632, 38.
- [29] F. Challenger, E.A. Mason, E.C. Holdsworth, R. Emmott, J. Chem. Soc. 1953, 292.